吴恩达(计算机学家)
吴恩达(Andrew Ng),1976年出生于英国伦敦,博士研究生毕业于美国加州大学伯克利分校,华裔美国籍计算机科学家、人工智能学者,Coursera联合创始人,亚马逊董事会成员[1],斯坦福大学计算机科学系和电子工程系副教授,原百度公司首席科学家[2],被誉为“谷歌大脑之父”[3]。
1992年,毕业于新加坡莱佛士书院。1997年,获得卡内基梅隆大学的计算机科学、统计学和经济学三重专业大学学位。1996-1998年间,在AT&T贝尔实验室学习和研究。1998年,获得麻省理工学院的硕士学位。2002年,获得博士学位,并开始在斯坦福大学工作。2007年,获得斯隆奖。2008年,入选《麻省理工科技创业》杂志评选出的科技创新35俊杰。2011年,在谷歌创建了谷歌大脑项目。2012年,其领导的团队教会一个由16000台计算机组成的网络系统,在数百万张照片中辨认出猫的照片,在当时轰动一时[4];同年,和Daphne Koller共同创立Coursera[1]。2013年,入选《时代》杂志年度全球最有影响力100人,成为16位科技界代表之一[5]。2014年5月16日,加入百度,负责百度大脑(Baidu Brain)计划,并担任百度公司首席科学家。2017年3月20日,宣布从百度辞职;同年12月,宣布成立人工智能公司Landing.ai,并担任首席执行官。2021年,被评选为“2021福布斯中国·北美华人精英TOP 60”[2]。
2024年4月,亚马逊任命吴恩达为公司董事会成员[6]。
吴恩达的妻子是人工智能专家卡罗尔·莱利(Carol Reiley)[7]。
基本介绍编辑本段
|
|
人物经历编辑本段
求学经历
吴恩达1976年出生于伦敦,父亲是一位香港医生,英文名叫Andrew Ng,吴恩达年轻时候在香港和新加坡度过。1992年吴恩达就读新加坡莱佛士书院,并于1997年获得了卡内基梅隆大学的计算机科学学士学位。之后他在1998年获得了麻省理工学院的硕士学位,并于2002年获得了加州大学伯克利分校的博士学位,并从这年开始在斯坦福大学工作。他(2002年)住在加利福尼亚州的帕洛阿尔托。研究经历
吴恩达主要成就在机器学习和人工智能领域,他是人工智能和机器学习领域最权威的学者之一。2010年,时任斯坦福大学教授的吴恩达加入谷歌开发团队XLab——这个团队已先后为谷歌开发无人驾驶汽车和谷歌眼镜两个知名项目。
吴恩达与谷歌顶级工程师开始合作建立全球最大的“神经网络”,这个神经网络能以与人类大脑学习新事物相同的方式来学习现实生活。谷歌将这个项目命名为“谷歌大脑”。
吴恩达最知名的是,所开发的人工神经网络通过观看一周YouTube视频,自主学会识别哪些是关于猫的视频。这个案例为人工智能领域翻开崭新一页。吴恩达表示,未来将会在谷歌无人驾驶汽车上使用该项技术,来识别车前面的动物或者小孩,从而及时躲避。
2014年5月16日,百度宣布吴恩达加入百度,担任百度公司首席科学家,负责百度研究院的领导工作,尤其是Baidu Brain计划。
2014年5月19日,百度宣布任命吴恩达博士为百度首席科学家,全面负责百度研究院。这是中国互联网公司迄今为止引进的最重量级人物。消息一经公布,就成为国际科技界的关注话题。美国权威杂志《麻省理工科技评论》(MIT Technology Review)甚至用充满激情的笔调对未来给予展望:“百度将领导一个创新的软件技术时代,更加了解世界。”
2017年10月,吴恩达将出任Woebot公司新任董事长,该公司拥有一款同名聊天机器人。
2017年12月,吴恩达宣布成立人工智能公司Landing.ai,担任公司的首席执行官。
在2019世界人工智能大会期间, Landing AI创始人、著名科学家吴恩达接受新浪科技专访,谈到了对5G、深度学习、个人数据隐私等方面的看法。在谈到深度学习时,吴恩达表示,深度学习还有很大的潜力,是一项被证明有效的技术,我们需要继续加大投入。
主要成就编辑本段
机器学习和人工智能,研究重点是深度学习(Deep Learning)。
机器学习
吴恩达早期的工作包括斯坦福自动控制直升机项目,吴恩达团队开发了世界上最先进的自动控制直升机之一。吴恩达同时也是机器学习、机器人技术和相关领域的100多篇论文的作者或合作者,他在计算机视觉的一些工作被一系列的出版物和评论文章所重点引用。
人工智能
早期的另一项工作是the STAIR (Stanford Artificial Intelligence Robot) project,即斯坦福人工智能机器人项目,项目最终开发了广泛使用的开源机器人技术软件平台ROS。
2011年,吴恩达在谷歌成立了“Google Brain”项目,这个项目利用谷歌的分布式计算框架计算和学习大规模人工神经网络。这个项目重要研究成果是,在16000个CPU核心上利用深度学习算法学习到的10亿参数的神经网络,能够在没有任何先验知识的情况下,仅仅通过观看无标注的YouTube的视频学习到识别高级别的概念,如猫,这就是著名的“Google Cat”。这个项目的技术已经被应用到了安卓操作系统的语音识别系统上。在线教育
吴恩达是在线教育平台Coursera的联合创始人,吴恩达在2008年发起了“Stanford Engineering Everywhere”(SEE)项目,这个项目把斯坦福的许多课程放到网上,供免费学习。NG也教了一些课程,如机器学习课程,包含了他录制的视频讲座和斯坦福CS299课程的学生材料。吴恩达的理想是让世界上每个人能够接受高质量的、免费的教育。Coursera和世界上一些顶尖大学的合作者们一起提供高质量的免费在线课程。Coursera是世界上最大的MOOC平台。
翻译智能体
2024年6月,吴恩达开源了一个AI智能体机器翻译项目。他分享了关于AI智能体机器翻译对改进传统神经机器翻译方面的看法:「具有巨大潜力,尚未被完全发掘」,并发布了一个他一直在周末玩的翻译智能体演示。该翻译智能体以MIT 许可证形式发布。用户可以自由使用、修改和分发该代码,无论是商业用途还是非商业用途。
荣誉记录编辑本段
2008年,吴恩达入选“the MIT Technology Review TR35”,即《麻省理工科技创业》杂志评选出的科技创新35俊杰,入选者是35岁以下的35个世界上最顶级的创新者之一。
“计算机和思想奖”的获得者。
2013年,吴恩达入选《时代》杂志年度全球最有影响力100人,成为16位科技界代表之一。
2021年,被评选为“2021福布斯中国·北美华人精英TOP 60”。
学术任职编辑本段
个人生活编辑本段
2019年2月20日,华裔机器学习专家吴恩达(Andrew Ng)和妻子卡罗尔·莱利(Carol Reiley)在公开信中宣布,他们的第一个孩子Nova诞生了。Nova全名Nova Athena Ng,出生于2019年2月7日,大年初三的上午7点11分,体重6磅10盎司(约3kg),是个女孩。在英语中,Nova意为新星。
北京时间2022年2月8日上午消息,吴恩达(Andrew Ng)发布推文,透露其新冠病毒检测呈阳性。庆幸接种了三针疫苗。
2022年2月,吴恩达新冠病毒检测呈阳性。2月15日,吴恩达在推特宣布,自己的新冠检测已经从阳性转为阴性,几乎没有症状了,看起来病毒正在从体内消失。人物评价编辑本段
相关作品编辑本段
Adam Coates, Brody Huval, Tao Wang, David J. Wu, Bryan Catanzaro and Andrew Y. Ng in ICML 2013.
Parsing with Compositional Vector Grammars
John Bauer,Richard Socher, Christopher D. Manning, Andrew Y. Ng in ACL 2013.
Learning New Facts From Knowledge Bases With Neural Tensor Networks and Semantic Word Vectors
Danqi Chen,Richard Socher, Christopher D. Manning, Andrew Y. Ng in ICLR 2013.
Convolutional-Recursive Deep Learning for 3D Object Classification.
Richard Socher, Brody Huval, Bharath Bhat, Christopher D. Manning, Andrew Y. Ng in NIPS 2012.
Improving Word Representations via Global Context and Multiple Word Prototypes
Eric H. Huang, Richard Socher, Christopher D. Manning and Andrew Y. Ng in ACL 2012.
Large Scale Distributed Deep Networks.
J. Dean, G.S. Corrado, R. Monga, K. Chen, M. Devin, Q.V. Le, M.Z. Mao, M.A. Ranzato, A. Senior, P. Tucker, K. Yang, A. Y. Ng in NIPS 2012.
Recurrent Neural Networks for Noise Reduction in Robust ASR.
A.L. Maas, Q.V. Le, T.M. O'Neil, O. Vinyals, P. Nguyen, and Andrew Y. Ng in Interspeech 2012.
Word-level Acoustic Modeling with Convolutional Vector Regression Learning Workshop
Andrew L. Maas, Stephen D. Miller, Tyler M. O'Neil, Andrew Y. Ng, and Patrick Nguyen in ICML 2012.
Emergence of Object-Selective Features in Unsupervised Feature Learning.
Adam Coates, Andrej Karpathy, and Andrew Y. Ng in NIPS 2012.
Deep Learning of Invariant Features via Simulated Fixations in Video
Will Y. Zou, Shenghuo Zhu, Andrew Y. Ng, Kai Yu in NIPS 2012.
Learning Feature Representations with K-means.
Adam Coates and Andrew Y. Ng in Neural Networks: Tricks of the Trade, Reloaded, Springer LNCS 2012.
Building High-Level Features using Large Scale Unsupervised Learning
Quoc V. Le, Marc'Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg S. Corrado, Jeffrey Dean and Andrew Y. Ng in ICML 2012.
Semantic Compositionality through Recursive Matrix-Vector Spaces
Richard Socher, Brody Huval, Christopher D. Manning and Andrew Y. Ng in EMNLP 2012.
End-to-End Text Recognition with Convolutional Neural Networks
Tao Wang, David J. Wu, Adam Coates and Andrew Y. Ng in ICPR 2012.
Selecting Receptive Fields in Deep Networks
Adam Coates and Andrew Y. Ng in NIPS 2011.
ICA with Reconstruction Cost for Efficient Overcomplete Feature Learning
Quoc V. Le, Alex Karpenko, Jiquan Ngiam and Andrew Y. Ng in NIPS 2011.
Sparse Filtering
Jiquan Ngiam, Pangwei Koh, Zhenghao Chen, Sonia Bhaskar and Andrew Y. Ng in NIPS 2011.
Unsupervised Learning Models of Primary Cortical Receptive Fields and Receptive Field Plasticity
Andrew Saxe, Maneesh Bhand, Ritvik Mudur, Bipin Suresh and Andrew Y. Ng in NIPS 2011.
Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection
Richard Socher, Eric H. Huang, Jeffrey Pennington, Andrew Y. Ng, and Christopher D. Manning in NIPS 2011.
Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions
Richard Socher, Jeffrey Pennington, Eric Huang, Andrew Y. Ng, and Christopher D. Manning in EMNLP 2011.
Text Detection and Character Recognition in Scene Images with Unsupervised Feature Learning
Adam Coates, Blake Carpenter, Carl Case, Sanjeev Satheesh, Bipin Suresh, Tao Wang, David Wu and Andrew Y. Ng in ICDAR 2011.
Parsing Natural Scenes and Natural Language with Recursive Neural Networks
Richard Socher, Cliff Lin, Andrew Y. Ng and Christopher Manning in ICML 2011.
The Importance of Encoding Versus Training with Sparse Coding and Vector Quantization
Adam Coates and Andrew Y. Ng in ICML 2011.
On Optimization Methods for Deep Learning
Quoc V. Le, Jiquan Ngiam, Adam Coates, Abhik Lahiri, Bobby Prochnow and Andrew Y. Ng in ICML 2011.
Learning Deep Energy Models
Jiquan Ngiam, Zhenghao Chen, Pangwei Koh and Andrew Y. Ng in ICML 2011.
Multimodal Deep Learning
Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee and Andrew Y. Ng in ICML 2011.
On Random Weights and Unsupervised Feature Learning
Andrew Saxe, Pangwei Koh, Zhenghao Chen, Maneesh Bhand, Bipin Suresh and Andrew Y. Ng in ICML 2011.
Learning Hierarchical Spatio-Temporal Features for Action Recognition with Independent Subspace Analysis
Quoc V. Le, Will Zou, Serena Yeung and Andrew Y. Ng in CVPR 2011.
An Analysis of Single-Layer Networks in Unsupervised Feature Learning
Adam Coates, Honglak Lee and Andrew Ng in AISTATS 14, 2011.
Learning Word Vectors for Sentiment Analysis
Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts in ACL 2011.
A Low-cost Compliant 7-DOF Robotic Manipulator
Morgan Quigley, Alan Asbeck and Andrew Y. Ng in ICRA 2011.
Grasping with Application to an Autonomous Checkout Robot
Ellen Klingbeil, Deepak Drao, Blake Carpenter, Varun Ganapathi, Oussama Khatib, Andrew Y. Ng in ICRA 2011.
Autonomous Sign Reading for Semantic Mapping
Carl Case, Bipin Suresh, Adam Coates and Andrew Y. Ng in ICRA 2011.
Learning Continuous Phrase Representations and Syntactic Parsing with Recursive Neural Networks
Richard Socher, Christopher Manning and Andrew Ng in NIPS 2010.
A Probabilistic Model for Semantic Word Vectors
Andrew Maas and Andrew Ng in NIPS 2010.
Tiled Convolutional Neural Networks
Quoc V. Le, Jiquan Ngiam, Zhenghao Chen, Daniel Chia, Pangwei Koh and Andrew Y. Ng in NIPS 2010.
Energy Disaggregation via Discriminative Sparse Coding
J. Zico Kolter and Andrew Y. Ng in NIPS 2010.
Autonomous Helicopter Aerobatics through Apprenticeship Learning
Pieter Abbeel, Adam Coates and Andrew Y. Ng in IJRR 2010.
Autonomous Operation of Novel Elevators for Robot Navigation
Ellen Klingbeil, Blake Carpenter, Olga Russakovsky and Andrew Y. Ng in ICRA 2010.
Learning to Grasp Objects with Multiple Contact Points
Quoc Le, David Kamm and Andrew Y. Ng in ICRA 2010.
Multi-Camera Object Detection for Robotics
Adam Coates and Andrew Y. Ng in ICRA 2010.
A Probabilistic Approach to Mixed Open-loop and Closed-loop Control, with Application to Extreme Autonomous Driving
J. Zico Kolter, Christian Plagemann, David T. Jackson, Andrew Y. Ng and Sebastian Thrun in ICRA 2010.
Grasping Novel Objects with Depth Segmentation
Deepak Rao, Quoc V. Le, Thanathorn Phoka, Morgan Quigley, Attawith Sudsand and Andrew Y. Ng in IROS 2010.
Low-cost Accelerometers for Robotic Manipulator Perception
Morgan Quigley, Reuben Brewer, Sai P. Soundararaj, Vijay Pradeep, Quoc V. Le and Andrew Y. Ng in IROS 2010.
A Steiner Tree Approach to Object Detection
Olga Russakovsky and Andrew Y. Ng in CVPR 2010.
Measuring Invariances in Deep Networks
Ian J. Goodfellow, Quoc V. Le, Andrew M. Saxe, Honglak Lee and Andrew Y. Ng in NIPS 2009.
Unsupervised Feature Learning for Audio Classification Using Convolutional Deep Belief Networks
Honglak Lee, Yan Largman, Peter Pham and Andrew Y. Ng in NIPS 2009.
Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations
Honglak Lee, Roger Grosse, Rajesh Ranganath and Andrew Y. Ng in ICML 2009.
Large-scale Deep Unsupervised Learning using Graphics Processors
Rajat Raina, Anand Madhavan and Andrew Y. Ng in ICML 2009.
A majorization-minimization algorithm for (multiple) hyperparameter learning
Chuan Sheng Foo, Chuong Do and Andrew Y. Ng in ICML 2009.
Regularization and Feature Selection in Least-Squares Temporal Difference Learning
J. Zico Kolter and Andrew Y. Ng in ICML 2009.
Near-Bayesian Exploration in Polynomial Time
J. Zico Kolter and Andrew Y. Ng in ICML 2009.
Policy Search via the Signed Derivative
J. Zico Kolter and Andrew Y. Ng in RSS 2009.
Joint Calibration of Multiple Sensors
Quoc Le and Andrew Y. Ng in IROS 2009.
Scalable Learning for Object Detection with GPU Hardware
Adam Coates, Paul Baumstarck, Quoc Le, and Andrew Y. Ng in IROS 2009.
Exponential Family Sparse Coding with Application to Self-taught Learning
Honglak Lee, Rajat Raina, Alex Teichman and Andrew Y. Ng in IJCAI 2009.
Apprenticeship Learning for Helicopter Control
Adam Coates, Pieter Abbeel and Andrew Y. Ng in Communications of the ACM, Volume 52, 2009.
ROS: An Open-Source Robot Operating System
Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs, Eric Berger, Rob Wheeler, and Andrew Y. Ng in ICRA 2009.
High-Accuracy 3D Sensing for Mobile Manipulation: Improving Object Detection and Door Opening
Morgan Quigley, Siddharth Batra, Stephen Gould, Ellen Klingbeil, Quoc Le, Ashley Wellman and Andrew Y. Ng in ICRA 2009.
Stereo Vision and Terrain Modeling for Quadruped Robots
J. Zico Kolter, Youngjun Kim and Andrew Y. Ng in ICRA 2009.
Task-Space Trajectories via Cubic Spline Optimization
J. Zico Kolter and Andrew Y. Ng in ICRA 2009.
Learning Sound Location from a Single Microphone
Ashutosh Saxena and Andrew Y. Ng in ICRA 2009.
Learning 3-D Object Orientation from Images
Ashutosh Saxena, Justin Driemeyer and Andrew Y. Ng in ICRA 2009.
Reactive Grasping Using Optical Proximity Sensors
Kaijen Hsiao, Paul Nangeroni, Manfred Huber, Ashutosh Saxena and Andrew Y. Ng in ICRA 2009。
人物观点编辑本段
附件列表
本站全部内容禁止商业使用。文本内容除另有声明外,均在知识共享 署名-非商业性使用-相同方式共享 3.0 中国大陆(CC BY-NC-SA 3.0 CN)许可协议下提供。
如果您认为本词条还有待完善,请 编辑
上一篇 范内瓦·布什(计算机学家) 下一篇 约翰·汉尼斯(计算机学家)